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1 Introduction 

1.1 Purpose and scope 
The algorithms used in the services of GlobEmission to derive emission estimates from satellite data 
are described in detail in this document. Each of the 5 algorithms described has been developed for a 
specific type of emission and spatial scale. The performance of the algorithms in combination with the 
available satellite data has been tested. This document contains for each algorithm a description of 
the input data, detailed algorithm description and an error analysis. The error analysis is based on 
theoretical calculations but tested with real satellite data. 
 
 

2 Documents 
 

2.1 Reference documents 
 
Chapter 4.1 

[RD-3] Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global 
Biogeochem. Cy., 15, 955–966, 2001, and updates from Andreae, M. O., personal communication, 
2007 . 
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Dicarbonyl Products of the OH Radical-Initiated Reaction of a Series of Aromatic Hydrocarbons, 
Environ. Sci. Technol., 43(3), 683–689, doi:10.1021/es8019098, 2009. 
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3 Overview of algorithms 
Satellite instruments measure high resolution radiance spectra at wavelengths in the 
ultraviolet, visible or infrared, which provide valuable information on the chemical 
composition of the atmosphere for various trace gases and aerosols. From their sun-
synchronous orbit at a height of ~800 km they have a global coverage within 1-5 days at a 
10-50 km resolution. The homogeneity and global coverage of the satellite retrievals are ideal 
to estimate top-down emissions. To achieve this, the retrieved tropospheric column 
concentrations of a trace gas are compared with the simulated concentrations from a 
chemistry transport model, based on a bottom-up emission inventory. The difference between 
observed and modelled concentrations contains information on how to adjust the underlying 
trace gas emissions. This is an inverse problem which is computationally challenging because 
the non-local relation (sensitivity) between emission and concentration has to be found. Due 
to transport away from the source, life-time information of the pollutant is crucial. 
Several approaches have been developed, which are applied to different time scales and 
emission inventory resolutions. Shorter assimilation intervals ask for fast data assimilation 
algorithms, while transport issues become important for high spatial resolution. The methods 
differ in their emission domain (global or regional), the used satellite data, and the used 
chemical transport model, and sensitivity derivation.  
Various techniques are used: e.g. adjoint modelling, Kalman filters, ensemble Kalman filter 
and 4D-VAR data assimilation. Also the chemical-transport models vary: IMAGES, 
CHIMERE, LOTOS-EUROS, SILAM. The details of the algorithms used in the 
GlobEmission project are discussed in detail in section 4. 
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4 Algorithm descriptions 
 

4.1 Global Emission Estimates 
 

4.1.1 Introduction 
The adjoint model technique coupled with the IMAGESv2 global CTM is used for the 
derivation of satellite-based global emission estimates. The algorithm has been fully 
described in the first version of the ATBD document of GlobEmission (ATBD_02_01) 
(Figure 1). Below we give an overview of the input data used in the source inversion 
exercises (Section 1.1.2), and discuss model features regarding the HCHO and SO2 model 
simulation (Section 1.1.3).  Sensitivity inversions allowing to characterize uncertainties in the 
emission estimates are also presented (Section 1.1.3).  

 

 
Figure 1: A schematic view of the source inversion algorithm as implemented in IMAGESv2. 

 

4.1.2 Input data  
Satellite data:  HCHO vertical column abundances from the OMI and GOME-2 sensors. This 
dataset is  obtained from the UV-Vis retrieval team of BIRA-IASB and is available at 
http://h2co.aeronomie.be. A new dataset of SO2 column densities from the OMI instrument 
has been developed at BIRA-IASB and will be used to constrain the SO2 source.  

http://www.globemission.eu/docs/GE_ATBD_02_01.pdf


 

 Title: Algorithm Theoretical Baseline 
Ref.: GE_ATBD 
Issue: 3.4  
Date: 31 March 2016 
Page:        15 of 64 

 

A priori emissions: Anthropogenic emissions are obtained from the RETRO 2000 database 
(http://retro.enes/org, Schultz et al.. 2008), except over Asia where REASv2 database for year 
2008 is used (Kurokawa et al., 2013). Open fires are provided by the Global Fire Emission 
Database (GFEDv3, van der Werf et al., 2010) and the emission factors are from the 2011 
update of the database of Andreae and Merlet(2001). Vertical smoke profiles from open fires 
are obtained from Sofiev et al.(2013) and are based on plume top heights and MODIS fire 
radiative power. On average and on the global scale, half of emitted flux is injected in the 
boundary layer. The injection profile maps are obtained from the GlobEmission web portal 
(http://www.globemission.eu/data.php) and implemented in IMAGESv2. The diurnal cycle 
fire profile was derived based on Roberts et al.(2009). The global GFEDv3 NMVOC 
emission estimate is estimated at 105.4 TgVOC in 2010. Biogenic emissions of isoprene are 
obtained from the MEGAN-MOHYCAN inventory 
(http://tropo.aeronomie.be/models/isoprene.htm, Stavrakou et al., 2014). The global annual 
estimate of isoprene emissions is 363 Tg for 2010. The biogenic source of methanol is in 
Stavrakou et al. Stavrakou et al. (2011).  
 

Anthropogenic SO2 emissions are obtained from the REASv2 inventory (Kurokawa et 
al.2013) over Asia, from EMEP over Europe (http://www.ceip.at) and from the EDGAR3.2 
FT2000 inventory for 2000 over the rest of the world. The global emissions of SO2 from 
anthropogenic sources are estimated at 53.8 TgS in 2010. Vegetation fires are obtained from 
the GFEDv3 database and account for 1.3 TgS in 2010. Emissions of SO2 and other sulfur 
compounds from continuously degassing volcanoes are constant and amount to 7.2 TgS 
annually (Andres and Kasgnoc, 1998). Besides direct emissions, SO2 is formed through 
oxidation of sulfur-containing biospheric compounds like dimethyl sulfide (DMS), carbonyl 
sulfide (OCS), carbon disulfide (CS2), and hydrogen sulfide (H2S). The global annual 
photochemical source is calculated at 18.1 TgS. Dry and wet deposition account for approx. 
60% of the global SO2 sink, followed by oxidation by OH (20%), and heterogeneous in-cloud 
reactions of SO2 with H2O2 (18%) and with O3. The aerosol simulation in IMAGESv2 is 
described in Stavrakou et al.(2013). 
 

4.1.3 HCHO simulation using the IMAGESv2 global CTM  
IMAGESv2 global model provides the global distribution of about 130 chemical constituents 
between the Earth’s surface and 22.5 km, at a resolution of 2 degrees in latitude, 2.5 degrees 
in longitude and 40 vertically discretized levels. Advection is driven by monthly mean 
operational ECMWF ERA-Interim fields, and daily fields are used for temperature, water 
vapour, boundary layer mixing, and cloud optical depths. As the model time step is one day, 
diurnal variations in the photorates and in the concentrations are accounted for through 
correction factors computed via a diurnal cycle simulation with a 20-minute time step. The 
diurnal profiles are used to estimate the formaldehyde and SO2 model columns at the 
overpass times of the two satellites (9:30 LT for GOME-2, and 13:30 LT for OMI) from the 
daily averaged values calculated with a time step of one day. The modelled columns are 
confronted with HCHO and SO2 column data (binned onto the model horizontal grid and 
monthly averaged), following a 4-month spin-up time. The simulated monthly averaged 

http://retro.enes/org
http://www.globemission.eu/data.php
http://tropo.aeronomie.be/models/isoprene.htm
http://www.ceip.at/
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columns account for the vertical sensitivity of the measurements through the averaging 
kernels, and for the sampling times of observations at each location.  
The inorganic chemistry reactions, as well as the methane degradation mechanism, are as in 
Müller and Stavrakou (2005), with updated kinetic rates from Sander et al. (2011). The 
degradation mechanism for the majority of the NMVOCs is largely based on the Master 
Chemical Mechanism (MCM) (Saunders et al., 2003).  The isoprene oxidation chemistry 
follows the LIM0 mechanism (Peeters et al., 2014), which recycles OH more efficiently than 
generally assumed in models under low NOx conditions, (Peeters and Müller, 2010). 

4.1.3.1 HCHO yields from the oxidation of pyrogenic NMVOCs 
The oxidation chemistry of pyrogenic NMVOCs is presented in Stavrakou et al.(2009). 
According to this study, based on the quasi-explicit Master Chemical Mechanism v3.1 
(Saunders et al., 2003),  we performed time-dependent simulations under high NOx 
conditions using the chemical solver of the KPP package (Damian et al., 2002;Sandu and 
Sander, 2006). Simulations start at 06:00 for a temperature of 298K at a latitude of 30 degrees 
in February. The model is initialized with 0.1 ppb of the considered NMVOC, 35 ppb O3, and 
100 ppb CO. The NO2 concentration is kept constant and is taken equal to 1 ppb; such a 
choice reflects the high NOx regime associated to biomass burning events. Two HCHO 
yields are computed: after one day of simulation (short-term), and after 2 months (final). The 
short-term yield is defined as  

Yst = (HCHO produced after 1 day)/C0(NMVOC),  (1) 

where C0(NMVOC) is the initial concentration of the NMVOC. This yield represents the 
number of HCHO molecules generated by a given NMVOC one day after the injection time. 
The short-term yield defined in Eq. (1) provides better indication of the HCHO production 
that may be detected by the satellite instrument directly above biomass burning areas. The 
final yield is defined as  

 
Yf = (HCHO produced)/ΔC(NMVOC),  (2) 

where ΔC(NMVOC) is the difference between the initial and the final NMVOC 
concentrations. Due to the importance of both short-term and final yields in the correct 
representation of the HCHO production by our chemical mechanism, particular care has been 
taken to ensure that the IMAGESv2 calculated HCHO yields are as close as possible to the 
MCM yields, as is evident from Table 1.  
Compounds with the highest short-term HCHO yield are ethene (1.38 mol/mol), propene 
(1.78 mol/mol), and 2,3- butanedione (2 mol/mol). Strongly emitted compounds like acetic 
acid and methanol with lifetimes of several days have very small 1-day yields. For relatively 
short-lived species like ethene, glycolaldehyde, propene, acetaldehyde, and isoprene, more 
than 80% of the final yield is reached within the first day in the box model simulations.  
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Table 1: Photochemical production of HCHO from pyrogenic NMVOCs. The emission estimates are 10-

year averages based on GFEDv2 and the MEGAN-ECMWF inventory. Short-term and final yields are 
obtained from box model simulations. 

 

4.1.3.2 HCHO yields from the oxidation of isoprene 
The LIM1 isoprene oxidation mechanism (Peeters et al.2014) is used in the current version of 
the model. This mechanism builds upon the previous version LIM0 (Peeters et al. 2009; 
Peeters and Müller, 2010; Stavrakou et al. 2010) and accounts for OH recycling in the 
oxidation of isoprene. To calculate the HCHO yields using LIM1, we conduct  box model 
simulations starting at 9:00 am for a mid-latitude location in summer. Concentrations of NOx 
are kept constant throughout the simulation at very low NOx (40 ppt), low NOx (0.1 ppb), 
and high NOx conditions (1 ppb). The initial ozone concentration is set to 35 ppb. The 
HCHO yield from isoprene after one day of simulation is equal to 1.13, 1.54, and 2.20 
mol/mol, and the final yields calculated after 2 months  of simulation are equal to 1.78, 1.91, 
and 2.39 mol/mol, in very low, low, and high NOx regimes, respectively.  

4.1.3.3 HCHO yields from the oxidation of anthropogenic NMVOCs 
The MCM degradation mechanism for 32 anthropogenic NMVOCs is used in order to 
determine the HCHO yields from the NMVOCs oxidation under high (1 ppbv NO2) NOx 
conditions. Based on these yields and the species reactivity against OH oxidation, we derive 
the mean yield and mean reactivity for a lumped species OTHC (other hydrocarbons) which 
is implemented in IMAGESv2 (Table 2). In this way, OTHC is representative of the mixture 
of anthropogenic VOC compounds not explicitly included in the model. More details are 
given in Stavrakou et al. (in preparation).     
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Table 2: Anthropogenic VOCs and the corresponding HCHO yields (mol/mol) calculated in a high NOx 
environment. 

Species Yield 

butane 2.03 

2-methyl butane 2.81 

pentane 2.10 

hexane 2.80 

2-methyl propane 2.71 

heptane 2.95 

1,2,4-trimethyl 
benzene 3.00 

ethylbenzene 1.11 

octane 2.98 

decane 3.83 

2-methylpropene 2.89 

 

 

4.1.4 Error analysis 
Model errors might lead to potentially significant uncertainties on the derived fluxes which 
are, however, very difficult to estimate. To address this issue, sensitivity tests will be carried 
out to assess the influence of various parameters on the inferred fluxes. First, we will carry 
out inversions based on either GOME-2 or OMI HCHO columns, and assess the consistency 
between the derived emission fluxes. This will allow to investigate the robustness of the 
derived emissions on the choice of the satellite dataset. Furthermore, sensitivity tests where 
the error on the a priori emission parameters (biogenic, biomass burning) are either halved or 
doubled will be conducted.  Another sensitivity experiment will consist in addressing the 
dependency of the results on the cloud filter assumed for the satellite data. For that, HCHO 
data with cloud cover lower than 20%  will be used in the inversion, instead of 40% in the 
standard case study. Moreover, we have incorporated in IMAGESv2 a number of new 
developments in the isoprene degradation chemistry (Peeters and Müller, 2010; Stavrakou et 
al., 2010) which leads to HCHO formation. We will investigate the impact of these updates 
on the derived NMVOC flux strengths, especially over pristine forest regions, but also over 
mid-latitude regions in summertime. Further sensitivity studies could be conducted in order 
to improve the characterization of the uncertainties on the satellite-based emissions.  
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4.2 Regional Emission Estimates 
The DECSO algorithm (Daily Emission estimation Constrained by Satellite Observations, 
Mijling and Van der A, 2012) has been applied successfully for NOx emission estimation in 
East Asia, Middle East, South Africa, and India. In the following sections the algorithm is 
explained in detail, ending with an overview of the different algorithm versions. 

4.2.1 Input data 
The tropospheric columns of NO2 and SO2 of the satellite instruments OMI (on Aura) and 
GOME-2 (on Metop) are used. For both instruments, the tropospheric NO2 columns are taken 
from the KNMI retrieval product (DOMINO version 2), described by Boersma et al. (2011) 
and available through the TEMIS portal (http://www.temis.nl). SO2 data is obtained from 
NASA/Goddard Space Flight Center (http://so2.gsfc.nasa.gov/). 

4.2.2 Algorithm description 
Below, we derive the algorithm for NOx estimation estimates, but it can be applied to other 
short-lived trace gases as SO2 and CH2O. Because of the rapid cycling between NO and 
NO2, and the shift towards NO2 during night time due to lack of photolysis, our analysis is 
based on the bookkeeping of NOx rather than NO2, which is the observed quantity. We 
consider a time interval t=[0,T] between two data assimilation moments, in our case the 24 h 
period between two overpasses of the satellite instrument. An schematic overview of the 
algorithm is depicted in Figure 3. 
 

 
Figure 1: Flow chart of the DECSO algorithm. Central is the CHIMERE model, which is approximated by the 

simplified 2D transport model to get sensitivity information used in the inversion by the Kalman filter. 

At the core of the algorithm is the chemical transport model (CTM) which calculates the 
concentration fields of NO and NO2 at t=T from the initial fields at t=0, given the 
meteorological conditions and a certain emission database. After the model run, however, 
there is no information available of the sensitivity of the final NOx column concentration on 
the emission field; information needed by the Kalman filter for the emission inversion. 
Instead, we will derive a simplified 2D transport equation which approximates this relation 
analytically. It uses trajectory analysis to transport NOx columns over the model domain. The 
aging of the NOx column is described by an effective lifetime, chosen in such way that it 
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minimizes the calculated concentrations and the simulated concentrations by the CTM at t=T. 
The concentration fields from the CTM are also used to construct the forecasted tropospheric 
NO2 column concentration, by interpolation towards the satellite footprint, extension with a 
climatological column to the tropopause, and application of the averaging kernel from the 
satellite retrieval method. 
 

A priori emission inventory 
For the first DECSO emission estimates of NOx for the East China region, we use the 
INTEX-B emission inventory by Zhang et al. (2009, and private communication). In later 
algorithm versions and other regions, other emission inventories are used (see Section 4.2.4). 
INTEX-B covers Asia on a 0.2°×0.2° resolution, containing the yearly totals of SO2, NOx, 
CO, VOC, PM10, PM2.5, BC, and OC by four sectors (power, industry, residential, and 
transportation) for the year 2006. The NOx emission totals are interpolated to the model grid 
and distributes over three chemical components: NO (90% of the NO equivalent mass of 
NOx), NO2 (9.2%), and HONO (0.8%). The emissions are disaggregated to hourly values 
using sector-specific weekly and diurnal factors; no monthly cycle is postulated. 

 
Chemical transport model 
The CHIMERE multi-scale model (Schmidt et al., 2001; Bessagnet et al., 2004) is primarily 
designed to produce daily forecasts of ozone, aerosols and other pollutants and make long-
term simulations for emission control scenarios. In the presented configuration, CHIMERE 
has been implemented over East Asia (18°N to 50°N and 102°E to 132°E), simulating the 
atmosphere in 8 layers up to 500 hPa, with a horizontal resolution of 0.25°×0.25°. The 
meteorological data is taken from the deterministic forecast of the European Centre for 
Medium-Range Weather Forecasts (ECMWF), which is given on 91 atmospheric layers for a 
horizontal resolution of approximately 25×25 km². The boundary conditions for the domain 
border and top are taken from monthly climatologies (no nested run is performed). To reduce 
the effect of boundary values on the region of interest, the domain boundaries have been 
chosen over relatively unpopulated areas. 

In Europe, CHIMERE has been extensively intercompared to other urban air quality models 
(e.g. Vautard et al., 2006) and evaluated against ground-based measurements and satellite 
data (e.g. Blond et al., 2007). For China, validation results can be found in Mijling et al., 
2009.  
 

Derivation of the simplified 2D transport equation 
Let e, c(0), and c(T) be two-dimensional fields, representing the time-averaged emission, the 
NOx column concentration at t=0, and at t=T, respectively. They are written as vectors in an 
n-dimensional space, where n represents the total number of grid cells in the model domain. 
In our case, the dimension of state space n is 121×129=15,609.  

For a certain grid cell at t=T, the NOx column is composed of an aged column from t=0 
which has been transported into this grid cell, and a column of NOx which has been emitted 
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during [0,T], aged, and transported into this grid cell. This can be written by the matrix 
equation: 

HeGcc += )0()(T  (1)  

Matrix G describes the advection and decay of the initial concentration c(0) over the model 
grid. Matrix H describes how the concentrations at t=T change if the emissions in time 
interval T change, i.e. its matrix elements represent the sensitivities of the NOx column 
concentrations to the NOx emission at the model grid: 

j

i
ij e

cH
∂
∂

=  (2)  

Both G and H have size n×n, but are sparse if transport to other grid cells covers only a small 
fraction of the model domain, which is true for short-lived species such as NOx (~8h) and 
typical wind speeds (~24 km/h at 4 Beaufort) in our mesoscopic domain.  
The first term in equation (1) describes the advection and decay of the initial concentration 
over the model grid. The concentration of NOx particles in a certain grid cell column i at t=T 
can then be written as 

jj
j

jij
i

jTk
i kcT

a
a

eTc j τ1 with   ,     )0()()(G =Ω=∑ −  (3)  

in which the transport kernel Ωij (T) represents the fraction of the area of cell j which is 
transported to cell i during time interval T. To ensure mass conservation, the equation is 
scaled with the area a of the corresponding grid cells. For a regular grid over latitude and 
longitude a will depend on latitude φ: aj/ai=cos(φj)/cos(φi). The number of NOx particles in 
the plume will decay exponentially because of aging, which is described by an effective 
lifetime τj (or the reciprocal lifetime kj) from its source location. 
The second term in equation (1) represents all “fresh” NOx which has been emitted at a 
certain moment in the time interval and subsequently transported during the remaining time. 
Analogous to equation (3), and integrating over all time dependent emission contributions 
e(t) during T, we derive the expression: 

∑ ∫ −Ω= −
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(4)  

The inversion only adjusts time-averaged emissions; the diurnal and weekly cycle of the 
emissions are described by an emission modulation function f(t), which is copied from the 
chemistry transport model: 

1)(   ,   )()(
 week1

== tfetfte jjj  (5)  

Substituted in equation (4) this results in: 



 

 Title: Algorithm Theoretical Baseline 
Ref.: GE_ATBD 
Issue: 3.4  
Date: 31 March 2016 
Page:        24 of 64 

 

j
j

T

jij
tk

i

j
i edttTfte

a
a

Tc j∑ ∫ 







−Ω= →

−

0

H )()()(  
(6)  

Relating equation (4) and (6) to equation (1) gives us expressions for the elements of matrix 
G and H in terms of the (unknown) reciprocal lifetimes kj and the (known) transport kernel 
Ω(t): 
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(8)  

We will call matrix equation (1) with matrix elements defined in (7) and (8) the simplified 2D 
transport equation. Because it does not contain boundary conditions, it does not account for 
NOx concentrations which are transported from the outside into the model domain. This will 
affect sensitivity relations ∂ci/∂ej (and consequently the assimilation results) close to the 
domain border. We suppress this boundary effect by choosing our domain borders (where 
possible) in remote areas with low emissions.  
Equation (8) describes the sensitivity of the NOx concentration in cell i on the NOx emission 
in cell j. However, we are interested in the sensitivity of the NO2 concentration on the NOx 
emission: 

NOx
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ij e
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=
2

*  
(9)  

From the CTM simulation we obtain the NO2/NOx ratio γi for all cells i at the moment of 
assimilation T: 

10   ,   )()( i
2 ≤≤= γγ TcTc NOx

ii
NO
i

 (10)  

From this and equation (8) we get the sensitivities for NO2 column concentrations to NOx 
emissions, both at the model grid: 
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(11)  

 
The transport kernel 
Driving force behind the transport of NOx is the time and space dependent wind field 
u(x,y,z,t). In the simplified 2D transport equation the transport is described by matrix function 
Ω(t), whose column j can be interpreted as the advection of the tropospheric column of NOx 
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of grid cell j over the model grid during the time interval [T−t,T]. We discretize Ω(t) at nT 
instants tn, equally distributed over the assimilation time interval: 

TnT nntntnTt ,,1   ,   
2
1   ,   / 2=∆





 −==∆  (12)  

If nT is sufficiently large such that the transport distance is small during Δt (at wind speed v 
and grid cell size Δx this implies Δt << Δx/v must hold), the integral in equation (8) can be 
approximated by a summation over sparse matrix operations 
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The elements of Ωij are calculated for each tn by trajectory analysis, which must take the 
divergence of the wind field and the height dependence of wind and NOx concentration into 
account. In remote areas, for example, the bulk of the NOx tends to be located higher up in 
the troposphere (mainly because of uplifting and washing out of the NOx in the lower 
troposphere) where wind flows generally faster. A practical method for fast calculation is by 
dividing the source grid cell j in a large amount of sub grid cells nS and start the trajectory for 
each sub cell at a unique height, distributed according to the particle density in the NOx 
column.  Each sub cell is transported along the time dependent, two-dimensional wind field 
vertically interpolated to this height. Then Ωij (t) can be found by counting the number of sub 
cells which originate in cell j at time T−t and are within cell i at time T. 
 

The effective lifetime 
The variation in lifetime, however, is too large to simply assume a fixed value for τ. The 
lifetime of NOx can vary between several hours and several days, depending on factors such 
as temperature, sunlight, precipitation, altitude, and presence of other chemical species and 
aerosols. This dependence is too intricate to make a straightforward parameterization of τ 
which could be used in look-up tables. Instead, we use the results of the forward chemical 
transport model run to retrieve information on the NOx lifetime. 
The matrix elements of G and H in equations (7) and (8) depend on the unknown reciprocal 
lifetimes k associated with the grid cells. The residue r is defined as the difference between 
the column concentrations cCTM calculated with the CTM and the concentrations calculated 
with the simplified 2D transport equation, at t=T:  

( )ekHckGckr )()0()()()( CTMCTM +−= T  (14)  

The effective lifetime field is found by minimizing the residue for k numerically. The 
exponential dependence in k of the matrix elements, and the reciprocal dependence of τ of k, 
makes the residue function relatively insensitive for variations in both low and high values of 
τ. Unrealistic high or low lifetime values are corrected by constraining the lifetime τ between 
2 h and 48 h. Far from emission sources, the lifetime can only be determined from the decay 
of the small background field, which contributes very weakly to the residue function. A good 
a priori lifetime field is therefore essential, and is taken from the results of the previous day, 
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assuming that day-to-day variations are small. 

 
Comparing model simulations with satellite observations 
For NO2, not all satellite retrievals are included in the data assimilation. Retrievals at cloudy 
conditions (cloud fractions larger than 20%) are filtered out, to reduce the influence of the 
modelled NO2 column below the clouds in the retrieval. For bright surfaces such as snow 
(surface albedo larger than 20%) the cloud fraction from the cloud algorithm becomes 
uncertain, hence these retrievals are also discarded. Retrievals with clouds below 800 hPa are 
filtered out because the possible intersection of the cloud with the NOx bulk makes the 
retrieval too sensitive for the exact cloud height. For OMI, the large outer 4 pixels at either 
side of the swath are filtered out, as are pixels affected by the row anomalies (which appear 
since June 2007). For GOME-2 we discard the backscan pixels (which are too large), and 
retrievals in the zoom-mode of the instrument (which are of unknown quality). 
The CHIMERE model calculates daily tropospheric columns up to 500 hPa. In order to 
extend the NO2 profiles from the model ceiling to the tropopause, we add a climatological 
partial column for this part of the free troposphere. This climatology was compiled from a 
2003−2008 run of the global chemistry transport model TM5, described in Huijnen et al. 
(2010), at a 2°×3° resolution and 34 atmospheric layers. Although in populated areas the 
added free tropospheric column contributes only a few percent to the total tropospheric 
column, it can account for up to 50% in remote areas, where the tropospheric NO2 column is 
small. 

We construct a representative vertical NO2 profile pi for the footprint area by taking a 
weighted average of the modeled vertical profiles pc

j in contributing grid cells, taking weight 
factor Wij from the surface fraction of grid cell j which is covering footprint i : 

∑∑ ===
j

ijij
j

c
jiji WWW 1 normalized  with ,  cWppp  (15)  

Afterwards, the interpolated profile pi is rebinned to the model layers used in the tropospheric 
NO2 retrieval algorithm, so the averaging kernel Ai can be applied to get the modeled, 
corrected NO2 column at satellite footprint i (which is the observable quantity):  

iiiy pA=  (16)  

For the inversion we will also need the Jacobian of the model, i.e. the matrix H which 
represents the linearization of the model around a certain emission field e: 

eHy ∆=∆    (17)  

H describes the sensitivity of the modeled observations y (in observation space) to changes in 
model emissions e (in state space). We want to find an expression of H in terms of the model 
sensitivities we found in equation (11). The gridded concentrations are interpolated to 
observation footprints by applying the interpolation matrix W from equation (15): 

eWHy ∆=∆ *~  (18)  
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in which y~∆  represents the change of the total tropospheric NO2 columns in observation 
space, simulated by our model. Note that there is no information on the vertical profiles, 
which complicates a direct application of the averaging kernels. Therefore we assume that an 
emission change Δe does change the total column value iy~  for modeled observation i, but 
does not change its vertical profile shape, so we can write the change in averaged, modeled 
observation in terms of the change of modeled observations: 









≡∆=∆ *   ,   ~

i

ii
iiii y

yy
pA

αα  
(19)  

Combining equations (18) and (19), we get the expression for the Jacobian, in terms of the 
model sensitivities, the interpolation matrix, and the averaging kernels: 

( ) *diag      WHαH =⇒∆=∆ ∑∑
j

kjk
k

ijii eHwy α  (20)  

in which H* is the (n×n) model sensitivity matrix described by equation (11) for NO2 
columns to NOx emissions on the model grid, and H is the (m×n) sensitivity matrix for NO2 
column observations to gridded NOx emissions, to be used in the Kalman equations below. 
 

The Kalman filter for emission estimation 
The relation between column concentration difference vector Δy and emission update vector 
Δe can be written as Δy =HΔe. Note that solving Δe from Δy and H is an underdetermined 
problem. Furthermore, the errors in y are large, and they would propagate non-locally in the 
solution, causing strong fluctuations in the emissions if this assimilation scheme is applied 
iteratively. To deal with these issues we use the Kalman filter, which calculates for every 
assimilation step the most probable emission field and its covariance, taking into account the 
errors in the modeled emissions and representation, and the errors in the observed 
concentrations. Due to the non-linearity of the problem the extended Kalman filter is used, 
which linearizes about the current mean and covariance: 

State vector forecast ef(ti+1) = Mi [ea(ti)] (K1) 
Error covariance forecast Pf(ti+1) = MiPa(ti)Mi

T + Q(ti) (K2) 

Kalman gain matrix Ki = Pf(ti)Hi
T[HiPf(ti)Hi

T + Ri]-1 (KG) 
State vector analysis ea(ti) = ef(ti) + Ki(yi – Hi [ef(ti)]) (K3) 
Error covariance analysis Pa(ti) = (I – KiHi) Pf(ti) (K4) 

The interpretation of the quantities is as follows: 
ea, ef analysis and forecast of the NOx emissions.  

Pf, Pa error covariance matrices (n×n) of the forecasted emissions ef and the analysis of the 
emissions ea. 
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M model describing temporal evolution of the emissions. M applied on the true state is 
assumed to introduce no bias: et(ti+1) = Mi [et(ti)] + εi, in which the noise is normally 
distributed around 0 with covariance Q. 

Q covariance matrix (n×n) of the modeled emissions (see Section 0). 

M (n×n) matrix representation of emission model M.  
y  observations of tropospheric NO2 columns.  

H observation operator which relates the emissions of NOx in the model grid to the 
observable tropospheric column concentrations of NO2. H applied to the true state is 
assumed to introduce no bias: yi

o = Hi [et(ti)] + εi, in which the noise is normally 
distributed around 0 with covariance R. 

R (m×m) matrix describing the covariances of the observation operator H (see Section 
0). 

H (m×n) Jacobian of the observation model H, linearized around state e=ea: 
yf = ya + H(ef−ea), describing how the tropospheric NO2 column of observation i 
changes when the NOx emission ε in grid cell j is changed. 

 

Covariance of the observation minus forecast 
The covariance of the observation minus forecast of the column concentration consists of 
three independent components: 

TfTf
reprobsOmF HHPRHHPΣΣΣ +=++=  (21)  

The observation error of the tropospheric NO2 column is composed of errors by the 
measurement noise of the satellite instrument and the spectral fitting, errors related to the 
separation of the troposphere and the stratosphere, and errors due to retrieval method 
parameters, such as clouds, surface albedo and a priori profile shape (Boersma et al., 2004). 
The second part describes representation error originating from an inaccurate CTM (due to 
errors in e.g. meteorology or chemistry scheme), and errors introduced by adding a 
climatological free tropospheric column, and interpolating grid values to the satellite 
footprint. Together with the observation errors they are contained in covariance matrix R. 
The last part of the OmF error describes how errors in the emission estimation propagate into 
the simulated column concentrations. The sensitivity matrix H is assumed to be exactly 
known; the error made by the approximating H with the simplified 2D transport equation is 
added to R. 
It is the balance between R and HPfHT which determines how much information from the 
observed concentration difference is used to update the emission estimates. We work out a 
practical method to estimate the covariance matrix R. By neglecting spatial correlations the 
OmF error σOmF for observation i can be written, analogous to equation (21) as 

2
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2
R,

2
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2
repr,

2
obs,

2
OmF,   iiiiii ssssss +==++=  (22)  
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in which σ2
prem,i is the propagated emission variance of matrix HPfHT. The observation error 

σobs is known from the satellite product: typically they have a dominating absolute error at 
low values (around 0.5 1015 molecules/cm2), and a dominating relative error at high values 
(around 30−45%). The representation error σrepr is unknown, but is assumed to be relative to 
the simulated tropospheric column concentration y with a fixed εrel: 

ii yrel,repr es =  (23)  

For each assimilation a large quantity of observations and forecasts are available, enabling 
the calculation of σrepr from OmF statistics, using the reduced χ2 criterion: 
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We calculate εrel such that χ2
red=1, meaning that the variation in OmF is well described by its 

error σOmF: the distribution of (yobs−y)/ σOmF will be Gaussian around 0 with standard 
deviation 1. By substituting (22) and (23) in (24) we find the equation: 
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We can find the root of f numerically using its derivative to εrel in Newton’s method (e.g. for 
OMI observations in May 2008, εrel=33%). With the daily estimated value of εrel we calculate 
σR,i according to (22). From these errors we construct the covariances by decomposing the 
error covariance matrix as  

)(diag  )(diag RR σCσR =  (26)  

in which C is a correlation matrix which elements only depend on the distance between two 
observation footprints: Cij = g(rij). We model g exponentially dependent on distance:  

)/exp()( Lrrg ijij −=  (27)  

in which L is the correlation length. Best inversion results are obtained by taking L small with 
respect to the footprint size (we will use L=10 km); in this case the improved condition of the 
matrix which is inverted in (KG) suppresses spatially oscillating solutions. Correlations 
between footprints at a distance larger than 6L are considered insignificantly: corresponding 
matrix elements Cij are set to zero, resulting in a sparse covariance matrix R. 

 
Emission covariances and inversion behavior 

For the Kalman filter approach we need to assess the emission model M, its error covariance 
Q. For these matrices it is important to find realistic estimates, which will optimize the 
assimilation for both convergence speed and noise reduction. 

Anthropogenic emission trends, if present, are usually very gradual, justifying a persistent 
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emission model, stating that tomorrow’s emissions are equal to today’s emissions. This 
implies that the emission model reduces to the identity matrix: M=I. Note that our algorithm 
adjusts averaged emission totals; the diurnal and weekly cycle is modulated already by the 
CTM, see equation (5).  

To assess the influence of the emission covariance Q on the inversion behavior we analyze 
the Kalman equations for the simple case where the concentration y only depends on one 
emission source x with a constant sensitivity factor h. The Kalman filter reduces to the 
following scalar equations, and matrix Q becomes a scalar quantity q, dictating how much the 
error of the emission increases between two assimilation moments. We find an expression for 
the evolution of the error analysis σi

a in terms of its predecessor σi-1
a: 
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(28)  

We can see with this formula that the limit value of the assimilation error σa depends on the 
sensitivity h (a higher h results in faster convergence to a lower σa), the observation and 
representation error σR (a lower σR results in a lower σa), and emission error increment q. q is 
the only unknown parameter and its value will affect the noise and convergence in the 
assimilation. A high emission uncertainty q results in a large noise on the assimilated 
emission, and a low uncertainty q leads to slow convergence. 
We model q with a dominating absolute error εabs at low emissions, shifting to a dominating 
relative error εrel at high emissions: 

xxxq relabsrelabs )/exp()( eeee +−=  (29)  

Note that the absolute error component is essential to be able to pick up changing emissions 
in areas where zero emission are defined. For our assimilation setup we construct matrix Q 
analogous to (26) and (27), modeling its errors according to (29) with εabs=0.02 1015 
molecules/cm2/h and εrel=5%, and allowing for weak covariances with its nearest neighbors 
by taking the covariance length L=10 km. These values are a trade-off between convergence 
speed and noise reduction, without loosing the possibility to pick up new emission sources. 
 

The Kalman gain 
After establishing the covariance matrices as described in the above sections, the Kalman 
equations can be solved numerically. Calculation time and storage space is reduced by 
making optimal use of the sparseness of the matrices. Point of concern is the inversion of the 
symmetric matrix A=HPfHT+R in the Kalman Gain (equation (KG)), which generally is ill-
conditioned and contains a null-space. Note that A being symmetric and positive semi-
definite implies that A has real, positive eigenvalues. The eigenvalues spectrum of matrix A 
consists of only a few large eigenvalues and many smaller ones, which makes solving the 
inverse of A very sensitive to noise. This sensitivity issue can be avoided by approximating A 
with a decomposition 

T11T             UUAUUA −− Λ≈⇒Λ≈  (30)  
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in which Λ is a diagonal matrix consisting of the mr largest eigenvalues of A. Here we use the 
numerical software library ARPACK (Lehoucq et al., 1998) for a fast calculation of the 
largest eigenvalues and corresponding eigenvectors. We take mr such that the sum of the 
largest eigenvalues account for 98% of the value of the trace of A, with a practical maximum 
of 1800 eigenvalues. As a result the condition number (the ratio of the largest eigenvector to 
the smallest eigenvector) is reduced to an order of 1000. Note that from DECSO version 2 
onward, the approximate inversion of the Kalman Gain matrix is replaced by a full matrix 
inversion by LDL decomposition. 
 

Calculation of the analysis covariance 
Correlations in the emission analysis are introduced because different emission grid cells 
contribute to an observation in the satellite footprint. Although the covariances can be 
strongly non-local (e.g. when fast winds transport long living NOx over remote areas), 
normally the covarying emission area is localized within a certain distance of the grid cell. 
Therefore it is not necessary to calculate all n×n elements of the analysis covariance matrix 
Pa. Instead we calculate the diagonal elements Pa

ii = σi
2 using (K4). Off-diagonal, we only 

calculate the covariance for grid cells within a radius of 300 km. Only correlations larger than 
0.01 are supposed to contribute significantly to the analysis: 
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(31)  

By neglecting all smaller correlations the analysis covariance matrix becomes a sparse 
matrix.  
 
Emission inventory update 

After calculating new emissions we have to make certain assumptions to use this data to 
update the emission database. At this time we only adjust the NOx emissions, neglecting the 
possibility that a change in anthropogenic NOx is related to a change in other anthropogenic 
emissions such as particulate matter and CO. Furthermore, we assume that the emission 
change is due to anthropogenic sources. Since we do not know how the new NOx emissions 
can be attributed to the different sectors (e.g. power, industry, residential, and transportation 
in the INTEX-B inventory for the Chinese region), we scale emissions in all sectors by ratio, 
assuming that the introduced error (through different sectorial diurnal and weekly emission 
cycles) is small. For new emission sources, where no sector information is known, the new 
NOx emissions are distributed evenly over all sectors. Finally, information about the injection 
height of the new emission cannot be inferred with the DESCO algorithm. Instead, emissions 
at all heights will be scaled by ratio. 

 

4.2.3 Error analysis 
The Kalman filter keeps track of the error estimates of each grid cell emission. The error of 
the emission analysis depends on the sample frequency of the downwind concentration 
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plume, the average sensitivity of the emission to the observed concentration, and the error 
growth of the emissions between assimilation moments. In Figure 4 the emission analysis 
errors of the entire domain are plotted against the emissions, and are modelled according to 
equation (29). For OMI data assimilation, we find a dominating absolute error of 0.38 1015 
molecules/cm2 at low emissions, and a dominating relative error of 47% at high emissions. 
Data assimilation with GOME-2 results in larger emission errors due to the smaller amount of 
observations: 0.48 1015 molecules/cm2 at low emissions, and 74% at high emissions. Note 
that when the emissions converge to their true state the analysis errors become overestimated 
due to an overestimation of the emission model covariance Q. However, inflating the 
emission forecast covariance by a significant Q at every assimilation cycle is necessary to 
avoid becoming insensitive to emission changes. 

Calculating the emission for an area larger than a grid cell reduces the associated error 
considerably. For example, for the individual Beijing grid cells in the OMI time series of 
May-December 2008 the mean relative emission error is 58%. By taking an average over 4 
grid cells, the mean error drops to 23%. By taking the negative covariances between the grid 
cells into account the emission analysis error drops further to 20%. For the GOME-2 time 
series, the errors are 91%, 47%, and 38%, respectively. The effect of the negative covariances 
is here stronger for GOME-2 due to the larger footprint size.. 

 
Figure 2: Scatter plot for emission analysis against its error, for all emissions in the domain at 1 December, 2008. Left 

panel shows results for OMI, right panel for GOME-2. 

4.2.4 DECSO algorithm and emission data versions 
DECSO version 1 

• CHIMERE V2006 

• No biogenic emissions 

• INTEX-B emission inventory  
• Landuse by GLCF database (1993) 
• European diurnal cycle 
• Boundary conditions LMDzINCA (gas), GOCART (aerosol) 
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Used in: 

• Mijling and Van der A (2012) 
• GlobEmission, phase 1 (East Asia) 

 
DECSO version 2 

• Modelling CHIMERE with sector-dependent emission injection heights 
• Fast back-trajectory calculations 
• Adjusted retrieval error tropospheric NO2 
• Update of NOx-correlated pollutants 
• Noise and bias reduction in remote areas 
• Full Kalman matrix inversion using LDL decomposition 
• Initial emission inventories: 

o South Africa: EDGAR v4.2, 2008 
o India: EDGAR v4.2, 2008 

Used in: 

• Mijling et al. (2013) 
• GlobEmission, phase 1 (India, South Africa) 

 
DECSO version v3a 

• CHIMERE V2006.  
• Initial emission inventories: 

o East Asia: MEIC 2008 (China) + INTEX-B (outside China) 
o South Africa: EDGAR v4.2, 2008 
o Middle East: EDGAR v4.2, 2008 

• Diurnal cycle: flattened for China, European for other regions. 
• Calculation speed: switching from g95 to ifort compiler, and calculating matrix 

inversions with LAPACK 
Used in: 

• GlobEmission, phase 2 (East Asia, Middle East, South Africa) 
The emission estimates show unrealistic day-to-day (and possibly month-to-month) 
fluctuations of emissions. Emission noise in low-emitting areas (introduction of positive 
emission bias, and unrealistic seasonal cycle when assimilating OMI measurements). 
 

DECSO version v3b 

• CHIMERE V2013: new transport schemes, secondary organic aerosol chemistry, 
updated chemical reaction rates. 

• New land use data: GlobCover Land cover (2009). 
• Biogenic emissions by MEGAN 
• Initial emission inventories: 
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o East Asia: MEIC 2010 (China) + INTEX-B (outside China), regridded. 
o Middle East: HTAP v2 (EDGAR v4.3) 

• Reduction of day-to-day emission fluctuations by OmF criterium [-5,10]. 
• Diurnal cycle: flattened for Middle East, European for East Asia. 

Used in: 

• Ding et al. (2015) 
• GlobEmission, phase 2 (East Asia, Middle East) 

 
DECSO version 4 

• Reduction of day-to-day emission fluctuations by 3-sigma (emission error) criterion  
• New parametrization of R matrix 
• Diurnal cycle: flattened 

The emission noise is greatly reduced. The regional emission totals go down, but this is 
mainly related to the emission noise reduction (reduction of positive bias). Individual hot-
spots, especially when undersampled, can disappear (e.g. Ulaanbaatar, and some power plants 
in North-East China). Apparently a slower convergence rate at changing emission signals. 

Used in: 

• GlobEmission, phase 2 (East Asia) 

4.3 Emission Inventories for European products 
 
Establishing (long term) trends in pollutant emissions and concentrations is a key part of 
evaluating the impact of policies. Traditionally, concentrations of air pollutants are monitored 
using in-situ measurement networks (Tørseth et al., 2012), whereas emissions are estimated 
on annual basis within the convention for long range transport and air pollution (CLRTAP). 
Establishing trends based on monitoring networks is hampered by different equipment used at 
individual sites or countries, replacement of instruments, etc. (Cooper, Gao, Tarasick, 
Leblanc, & Sweeney, 2012; Sicard, Coddeville, & Galloo, 2009). Moreover, large areas in 
(south eastern) Europe are not covered by these networks. Similarly, the approaches and 
quality of emission reporting are variable among European countries (Pouliot et al., 2012). 
Hence, trend analyses based on satellite datamay provide a valuable independent source of 
information to compliment traditional monitoring strategies (Bovensmann et al., 1999; Levelt 
et al., 2006). 
 
To determine the trends in anthropogenic NOx across Europe two approaches are 
investigated. In the first approach, a fit model is applied to the timeseries of the bias between 
modelled  and retrieved NO2  tropospheric column. It is assumed that the NO2 column 
change is representative for an emission change and its validity assumption has been tested 
by Schaap et al. (2013). In the second approach Ensemble Kalman Filter is applied to ingest 
the retrieved  NO2 tropospheric column in the LOTOS-EUROS model. This approach allow 
for a better capture of the variability in emission strengths as they allow for the estimation of 
emission variability that changes sign or slope within the period of interest. 
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4.3.1 Input data 

4.3.1.1 Meteorological data 
The model is driven by 3-hourly meteorological data provided by European Centre for 
Medium-range Weather Forecast (ECMWF). These include 3D fields for wind direction, 
wind speed, temperature, humidity and density, substantiated by 2-d gridded fields of mixing 
layer height, precipitation rates, cloud cover and several boundary layer and surface 
variables. The vertical velocity field is calculated using the horizontal wind fields and the 
mass conservation law of incompressible fluids. Further, the water vapour concentration is 
calculated using the Claussius-Clapeyron relation. Rain is neglected when the 3-hour 
accumulated amount is less than 0.3 mm. Linear interpolation is used to derive the 
meteorological fields at the interval times between the update times.  

4.3.1.2 Emissions 
The major driver of the LOTOS-EUROS system is the anthropogenic emission data of VOC, 
SOx, NOx, NH3, CO, CH4 and PM.  The anthropogenic emission were prescribed following 
the MACC emission database ([Kuenen et al., 2011). The annual emission totals reported for 
2005 have been converted to hourly emission estimates using time factors for the emissions 
strength variation over the months, days of the week and the hours of the day and scaled for 
all year between 2003-2007. To account for the occasional fire events, the MACC global fire 
assimilation system, [Kaiser et al., 2009], is used on a hourly basis. The biogenic NMVOC 
emissions are calculated online following (Steinbrecher et al., 2009) and the sea salt 
emissions are parameterised following source formulations for coarse (Monahan et al., 1986) 
and fine (Mårtensson et al., 2003) aerosol modes. 

4.3.1.3 Boundary conditions 
The model is constrained by boundary conditions used from the global MACC reanalysis 
(Hollingsworth et al., 2008, Schere et al., 2012) based on a coupling of the ECMWF model 
[Flemming et al., 2009] to the chemical transport model MOZART [Emmons et al., 2010].  
 

4.3.2 Algorithm description 

4.3.2.1 LOTOS-EUROS 
The LOTOS-EUROS model is an operational air quality/chemical transport model of 
intermediate complexity focused on modelling the lower part of the troposphere. Below a 
description is given of the model characteristics. In this study LOTOS-EUROS model 
(version 1.10.001) , the domain spans from 35° to 70°Nord and -10°to 60°East with a grid 
resolution of 0.5°longitude x0.25°latitude (approximately 25x25km at mid latitude). 

In the vertical the model has four layers up to 3.5 km above sea level: a fixed surface layer of 
25 meter and three dynamic layers. The lowest dynamic layer is the mixing layer, followed 
by two equally thick reservoir layers up to the model top. The height of the mixing layer is 
part of the meteorological input data. The height of the reservoir layers has a minimum of 
50m. In some cases when the mixing layer extends near or above 3.5 km the top of the model 
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exceeds the 3.5 km according to the abovementioned description. For output purposes the 
concentrations at measuring height (reference height is usually 3.6 m) are diagnosed by the 
constant flux approach which relates the dry deposition speed and the concentration of a 
pollutant.  

The chemistry is parameterized following the TNO CBM-IV scheme [Schaap et al., 2008] 
and the aerosol chemistry is accounted for using the ISORROPIA parameterization 
(Fountoukis & Nenes, 2007). The transport is represented by advection in three dimension, 
vertical diffusion and entrainment. The dry deposition is parameterized following following 
the resistance approach (Erisman et al., 1994, Wichink Kruit et al., 2012). The wet deposition 
process is represented by below cloud scavenging for gases (Schaap et al., 2004) and particles 
(Simpson et al., 2003) 

4.3.2.2 Trends analysis: Remnant approach 
For the trend analysis the satellite (OMI and GOME-2) observations are used in synergy with 
the LOTOS-EUROS model. A multi-year simulation is performed using a single and thus 
constant a-priory anthropogenic NOx emission database. We use the model to estimate the 
variability due to synoptic variability in weather systems, which it resolves quite well. 
Moreover, the model resolves part of the seasonal variability due to changing in chemistry 
and mixing. As we are using a fixed NOx emission database the bias between the 
observations and model results will systematically change as the real emission strength is 
changing. The changes in the bias can therefore provide fruitful information concerning 
changes in NO2 tropospheric columns arising from changes in the emission in the recent 
years. 
In this study we apply a fit model (Weatherhead et al., 1998) to the time series of the bias 
between model and observation (hereafter called the remnant). In previous studies this fit 
model was used on NO2 tropospheric columns using GOME and SCIAMACHY data at a 
global scale and over China (van der A et al., 2006, van der A. et al., 2008). The fit model 
can be described by the following function:  

𝑌𝑌𝑡𝑡 = 𝐶𝐶 +  
1

12
𝐵𝐵𝐵𝐵+ 𝐴𝐴 sin �

𝜋𝜋
6
𝐵𝐵 + 𝛼𝛼�+ 𝑁𝑁𝑡𝑡 

where 𝑌𝑌𝑡𝑡 is the remnant at month t. The first two terms represent a linear trend with slope B 
representing the annual change in NO2. The third term describes the seasonal component of 
the annual cycle in de bias with amplitude A and phase shift α. 
𝑁𝑁𝑡𝑡 is the remainder which cannot be explained by the fit model. The autocorrelation, ϕ, in the 
remainder affects the precision of the trend. The autocorrelation in the remainders was 
analysed and an average autocorrelation of 0.1 was found without an indication of a spatial 
pattern. Hence, the remainders are weakly correlated and the trend precision is determined 
using the average value.  The linear trend B is considered as statistically significant with a 95 
% confidence level when �𝐵𝐵 𝜎𝜎𝐵𝐵� �  > 2, where 𝜎𝜎𝐵𝐵  is the precision of the trend.  𝜎𝜎𝐵𝐵  is defined 
as a function of the autocorrelation, the length of the dataset in months and the variance of the 
remainder, 𝜎𝜎𝑁𝑁 : 
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𝜎𝜎𝐵𝐵 =  
𝜎𝜎𝑁𝑁
𝑛𝑛3/2 �

1 + 𝜑𝜑
1− 𝜑𝜑

 

The fitting model (Weatherhead et al., 1998) is applied to each grid cell across the domain of 
interest, providing a spatial distribution of the fitting parameters. 
 
Figure 5 shows an example of a measured timeseries and the fitted function. The monthly 
averaged NO2 tropospheric column is plotted as a function of the month number starting in 
January 2005. The black dots represents the measurement while the red and blue lines 
represent respectively the linear decrease and seasonal component of the fitting result. 

 
 

 

Figure 3: An example of a timeseries for one grid cell near Paris (France). The Y axis shows the monthly mean NO2 
tropospheric column, and the X axis shows the month index starting January 2005. The black dots represent the 

measurements from OMI. The red and blue line represent respectively the linear decrease and the seasonal 
component of the fitting result. 

 

4.3.2.3 Trends analysis: Kalman filter approach 
 

The trends analysis of the bias assumes that the NO2 column changes is representative for an 
emission change. For most of the larger countries the assumption is valid, however for 
smaller countries and in the case of a strong increase in specific sectors such as international 
shipping the trends in the columns may underestimate actual emission trends of a country. To 
account for these issues, the chemistry transport model can be used to a larger.  In practice, 
LOTOS–EUROS is equipped with a data assimilation package (Barbu, Segers, Schaap, 
Heemink, & Builtjes, 2009; Curier et al., 2012), which is used to assimilate the OMI NO2 
tropospheric column.  To estimate the change in NOx emission from year to year, data-
assimilation of OMI tropospheric NO2 measurements in the LOTOS-EUROS chemistry 
transport model will be performed. The variability in the NOx emission scaling factor from 
the EnKF should represent the inter-annual changes in the NOx emissions.  
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Assimilation system 

A data assimilation system has been developed around the LOTOS-EUROS  model based on 
the Kalman filter technique. A Kalman filter computes probability density functions (pdf's) of 
the true state, given 1) a transition model to propagate the state in time with associated 
uncertainties; and 2) observations with associated representation error. Starting from initial 
pdf, the filter first performs a forecast step propagating the pdf in time to the first moment 
that observations become available. Then, during the analysis step, the forecasted pdf is 
replaced by an analyzed version that takes into account the new information that has become 
available. The Kalman filter is an example of a sequential assimilation, since forecast and 
analysis steps follow each other sequentially in time and use only information from the past.  
The original linear Kalman Filter is closed, i.e. if the initial pdf, the model uncertainty, and 
the representation error are expressed as Gaussian (normal) random vectors, and if in addition 
the transition model is linear, then the computed pdf's for the true state are Gaussian too. The 
advantage of Gaussian random vectors is that the complete pdf is described by a mean state 
vector and a covariance matrix only. In practice, the linear Kalman filter cannot be 
implemented for large scale applications as the size of the state vector is usually very large (at 
least n=104 elements) and storage of a covariance matrix becomes impossible since it requires 
n2 elements. In addition, the linear Kalman filter requires 2n evaluations of the transition 
model, which is far too expensive for the type of models considered here. Moreover transition 
models are usually non-linear as chemical reactions are included. 
A suitable alternative for the linear Kalman filter for air pollution models is the Ensemble 
Kalman filter  (EnKF)(Evensen 1994). In this formulation, the pdf of the state is not 
expressed in terms of a mean and covariance only, but is described by an ensemble of model 
states. The spread between the ensemble members should describe the uncertainty in the 
value of the state and quantities as mean and covariance of the state are computed from the 
ensemble statistics. The transition model is therefore not restricted to linearity, which 
simplifies the actual formulation and allows for a transparent implementation. The number of 
required ensemble members depends on the complexity of the pdf to be described, which is 
usually determined by the non-linearity of the transition model and the complexity of the 
associated model uncertainty. In practice, an ensemble with 10-100 is acceptable to keep 
computations feasible, and the complexity of the problems is limited to a point that this 
number is reached. 
In the EnKF formulation around the LOTOS-EUROS model used in this study, the basic time 
step between two analyses is one hour. At the end of each step, all observations that have 
become available are analyzed. The number of analyzed observations therefore depends on 
the overpass time of the satellites. 

Transition model 
The transition model from time (day) t[k] to t[k+1] is given by: 
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The transition model consists of 2 parts: 

• The vector c[k] contains the instantaneous model state at the end of the time step 
(here hourly). The model state consists of the concentrations of all components in 
each grid cell, as well as concentration depended fields such as the total aerosol water 
content. Operator M denotes the propagation of the concentrations by the LOTOS-
EUROS model from hour to hour. 

• The model is driven by uncertainty parameters λ[k], which are kept constant during 
the time step. 

 

In the current application, uncertainty is defined for the emission input. Emissions from 
anthropogenic as well as natural emissions are considered uncertain, to enforce variation in 
the studies key species O3 and NO2 but also in HCHO are CO, where the later are strongly 
influenced by natural emissions. Every time the model simulates emissions, the actual 
emission of group p in grid cell ij is described by: 

])[1(][ ksks p
ij

p
ij

p
ij λ+= ,         Equation 2 

where s denotes the nominal value. To account for emissions just outside the domain, the 
boundary conditions are changed similar to the adjacent emissions. The uncertainty λ is 
described as a colored noise process driven by an r-element uncorrelated white noise w[k] 
with zero mean and identity covariance; each element accounts for a different emission field. 
The standard deviation of the uncertainty is set to a value σ which has to be determined . To 
ensure that only realistic emissions are used, the values of λ are bounded into the interval [-
1,1], such that emissions are never non-negative or more than doubled. A temporal 
correlation is assumed with exponential decay; by this, the value of the emissions will change 
gradually from day to day, to ensure that emissions are lower or higher than the nominal 
value during a longer period. The driving white noise w[k] has only r elements (one for each 
group of uncertain emitted components), no spatial variation is initially included in the 
emission uncertainty.  However, since the noise factors λ are available for each grid cell, 
spatial variations will be introduced during the analysis step. 

The uncertainty specification has a number of undefined settings yet, which have to be 
defined prior to the assimilation experiments. These settings include the selection of the 
uncertain emissions (source categories, emitted species), the amplitude of the assumed 
uncertainties, and their temporal correlation. Appropriate values are those that can explain the 
observed difference between the model simulations and the observations, taking into account 
the representation error. These values will therefore be chosen once the (synthetic) 
observations are available.  
 

Ensemble formulation 

An ensemble of m state vectors forms the main data structure in the EnKF: 
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mjkj ,..,1,][ =ξ         Equation 3 

The spread in the ensemble should at any time represent the uncertainty about the value of the 
true state x[k] ; the true value exists but is unknown to the user, who could only provide an 
estimate of what are likely values. A mean and covariance for the unknown true state can be 
computed from the ensemble: 
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The ensemble members are initialized at day k=0 with 'analysed' filter states ξj
a[0], which are 

all the same and include model states c [0] resulting from a model run over the two weeks 
prior to the assimilation period, and uncertainty parameters λ[0] drawn from random 
generator with zero mean and standard deviation σ. In the forecast stage of the filter, each 
ensemble member ξj is propagated over the next time step using a white noise sample wj 
drawn from a random generator: 

]1[])1[(][ −Γ+−= kwkMk j
f
j

f
j ξξ  

Observation representation 

At the end of each step, the (synthetic) observations that have become available during this 
time step are collected in a vector y[k]. The observations can be simulated from a filter state 
by an operator H; the operator extracts from the concentration array the value at the station 
location, or the (partial) column over the footprint of a satellite pixel taking into account the 
averaging kernel. The difference between the observations and the simulations from the 
(unknown) true state is supposed to be described by: 

][][][][ kvkxkHky =−          Equation 6 

where v[k] is a random vector with zero mean covariance R[k] . These representation errors 
(or residues) are supposed to be uncorrelated (R is diagonal). The standard deviations that 
define the diagonal have to be determined by examining the difference between the 
simulations and the (synthetic) observations, taking into account the model uncertainty to 
(see previous section on uncertainty model). A parameterization for the representation error 
standard deviation could be that it is equal to a fraction of the observed value, with thresholds 
for the minimum and maximum values.  
For representation of satellite observations, also the size of the footprints with respect to the 
model grid cell size should be taken into account. The spatial representation error that is 
made by averaging concentrations over the footprint could be determined by comparing 
model simulations at the highest resolution with fields obtained after spatial averaging. This 
procedure has been applied to the LOTOS-EUROS simulations of formaldehyde of the nature 
run; the results are shown in Figure 1. 
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Figure 1:Variance of difference between high resolution simulations of formaldehyde (7 km) and averages over 
surrounding grid cells, as a function of the horizontal average. Given the size of a satellite footprint, this curve 

provides the spatial averaging error that arises from averaging over footprints. 

Analysis 

The ensemble is analysed using the available observations. Since the observation errors are 
supposed to be uncorrelated, the observations can be analysed one-by-one. For observation l, 
the first step in the analysis is to compute a gain matrix: 

( ) 1~~ −
+= ll

TfTf
l rHPHHPK         Equation 7 

where rll is the diagonal element of R for observation l; the time indices are omitted to simply 
the notations. Since only one observation is analysed here, the inverse at the right hand side is 
simply a division by a scalar. The matrix fP~  is a covariance matrix computed from the 
ensemble. Simply using the ensemble covariance for this is undesirable, since the spatial 
correlations represented by the ensemble are usually too strong. This exaggeration is mainly 
caused by the use of a finite ensemble size, which is useful to represent the major part of the 
covariance but is unable to represent all details correctly. In addition, the uncertainty model 
for the emissions has no spatial variation and therewith introduces an artificial increase of 
spatial correlations. Thirdly, even though their emission origin and timing may be 
independent, a similar diurnal cycle in the concentrations can create artificial or spurious 
correlations. As a consequence, the ensemble covariance may suggest that grid cells which 
are far apart from each other in the domain are strongly correlated, which is undesirable since 
these correlations are used to distribute the residue between an observation and a simulation 
over the domain. To be able to ignore the spurious correlations, the localization procedure 
described in [Houtekamer and Mitchell, 2001] is used. In this procedure, the covariance 
matrix actually used is formed from a Schur product between the ensemble covariance and a 
correlation matrix with finite band width. An element ijp~  of this covariance matrix is 
computed using: 

 )(~
ijijij dCpp =         Equation 8 

where dij is the horizontal distance between the grid cells holding elements i and j, and C(d) is 
a spatial correlation function. An appropriate formulation for C(d) is determined by 
examining the spatial correlations present in the simulation (Figure 2). At large distances, the 
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correlation factor vanishes and is explicitly set to zero. As a result, the gain matrix is zero for 
all elements outside this range, which limits the computational costs since only a small part of 
the full gain needs to be computed. 
With the (localized) gain for observation l available, the ensemble members are analysed by: 

 ( )a
llll

a
lj

a
lj xHyK 11;; −− −+= ξξ                Equation 9 

where a
lj 1; −ξ  is the ensemble member resulting from the analysis of the previous observation, 

and similar a
lx 1−  is the mean state computed over all previously analysed members; for the 

first observation, these are set to the forecast entities. The effect of the analysis is that 
elements of the state are changed following their relation to simulated observations.  

 
Figure 4 Spatial correlation in formaldehyde simulations in the nature run. Each dot represents a correlation 

between two time series of concentrations from different grid cells, plotted against the spatial distance between the 
cells. The averages (bars) are used to fit an appropriate spatial correlation function that can be used for the 

localization procedure. 

Observation screening 

In case the assimilation system is unable to represent an observation correctly, assimilation 
could lead to instability of the system. Such instability can occur if the model lacks certain 
physical parameterizations or if the model is unable to represent a measurement as a result of 
a mismatch of the model and measurement spatial or temporal resolution. To avoid this, a 
screening procedure is applied to reject those measurements which cannot be represented 
correctly by the assimilation system. The screening procedure is taken from [Jarvinen and 
Unden, 1997]. If the square of the difference between observation and filter mean is much 
larger than the expected variance of this difference, the observation is rejected. That is: 

 ( ) ( )ll
T
l

f
l

f
ll rHPHxHy +>− α

2

     Equation 10 
where the parameter α is a threshold factor. The rejected observations are flagged to be able 
to investigate afterwards where the filter is unable to represent them.  

Ensemble size 
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An important parameter in the filter that has not been discussed yet is the ensemble size.  In 
general, the ensemble size should be large enough to represent the covariance structure 
imposed by model uncertainty and the model physics. In this application, the covariance 
structure is rather simple, since all uncertainty is described by the local sources, and 
observations are available regularly over the domain. Experiments showed that for the 
described application a limited number of 12-15 modes is sufficient. The current assimilation 
system is based on conclusions from an extensive sensitivity study carried out within the 
framework of the SMOGPROG project [Swart et al., 2008], a number of 12 is currently used 
for the operational forecasts.  

 

4.3.3 Error analysis 
tba 
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4.4 Emission Estimates related to Aerosols 
 

4.4.1 Input data 
The input data for the aerosol emission estimation will be based on AOD retrievals of 
AATSR and MODIS. 

 

4.4.2 Algorithm description 
The emission inversion is based on using the SILAM chemistry transport model driven by 4-
dimensional variational inversion scheme.  
System for Integrated modeLling of Atmospheric coMposition SILAM (Sofiev et al., 2006, 
2008) currently includes both Eulerian and Lagrangian advection-diffusion formulations. The 
Eulerian core used in the current study is based on the transport scheme of Galperin (1999, 
2000), which incorporates the horizontal diffusion term and is combined with the extended 
resistance analogy of Sofiev (2002) for vertical diffusion. 
The removal processes are described via dry and wet deposition. Depending on the particle 
size, mechanisms of dry deposition vary from the primarily turbulent diffusion driven 
removal of fine aerosols to the primarily gravitational settling of coarse particles (Slinn and 
Slinn, 1980). The SILAM wet deposition parameterization (Sofiev et al., 2006, Horn et al., 
1987, Smith and Clark, 1989, Jylha, 1991) is based on direct observations performed for 
moderately hydrophobic aerosols. It distinguishes between sub- and in-cloud scavenging by 
both rain and snow. The particle size dependence of the impaction scavenging is taken into 
account by increasing the scavenging rate for super-micron particles in relation to their 
settling velocity.  

The system includes a meteorological pre-processor for diagnosing the basic features of the 
boundary layer and the free troposphere from the meteorological fields provided by 
numerical weather prediction (NWP) models (Sofiev et al., 2010). Physical-chemical 
transformation modules of SILAM include several tropospheric chemistry schemes, basic 
aerosol dynamics, and radioactive decay processes. The system accepts flexible definition of 
the particle size spectrum, which can be defined for each specific run depending on the 
application. 
The emission inversion is based on a variant of the 4D-Var data assimilation method, which 
involves iterative minimization of a quadratic cost function depending on the distance of the 
observations and their modeled counterparts, and on the distance between the emission 
estimate and the a priori emission inventory. A detailed description of the emission inversion 
method has been given in Vira and Sofiev (2012). In the following, we present a summary of 
the method, and its extension into particulate matter. 

Let us denote the parameter (such as initial state or emission rate) of interest as ξ, and define 
the model operator M mapping the parameter, or the control variable, to a unique phase-space 
trajectory x=Mξ defined over some finite time interval referred as the assimilation window. 
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The vector of observations y corresponds to the model state x via the observation operator H:  
y = H(x) + ε, where ε is the observation error, which is assumed to be Gaussian. 

The maximum likelihood estimate of the parameter ξ is then the value minimising the cost 
function 
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The first term penalises the deviation from the observations y whose accuracy is described by 
the covariance matrix R. The prior knowledge of ξ is included in the background value ξb and 
the background error covariance matrix B. The second term therefore penalises the deviation 
from the prior ξb. The cost function is minimised using iterative numerical algorithms. 

The gradient of equation (1) with respect to ξ  is  

)()()(' 11**
bBHxyRHMJ ξξξ −+−= −−

,     (2) 

where M* and H* are the tangent linear adjoint model and observation operators, respectively. 
(Marchuk, 1995). 

The forward dispersion model corresponding to the operator M and defining the time 
evolution of the model state is defined by the scalar transport equation 
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where cn is a concentration of the n-th species, fn(x,t) is the emission density, and the 
chemical sources and sinks are included in S(c,t). If the reaction term is linear, i.e.

),(),( txkctcS n= , then the adjoint equation to (3) reads as (Marchuk, 1995) 
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Here c*(x,t) is the first-order sensitivity of the functional (1) to a concentration perturbation 
at time t. Its solution corresponds to M* in (2). 

Estimating the complete four dimensional emission distribution is impractical due to under-
determination of the problem. Therefore, the approach used in this work and shared by 
previous studies (Yumimoto et al., 2007, Elbern et al., 2007) is to assume a constant relative 
deviation of the emission intensity from the background rate throughout the assimilation and 
forecast windows. The adjusted emission rate is written as ),()(),( 0 txfxtxf α= , where 

)(xα  is to be estimated. The diurnal emission variations are thus not affected by the 
assimilation. The correction factor α(x) is assumed to be constant along the vertical axis 
(height). The sensitivity, and, consequently, the gradient of J(ξ) with respect to α(x) (see 
equation (2)) is obtained by integrating the solution of the adjoint problem (4) over the 
assimilation window and the vertical extent of the model domain.  

The final emission estimates are given by multiplying the prior emission field with the factors 
α. An assimilation window of 24 hours will be used for the GlobEmission aerosol product. 



 

 Title: Algorithm Theoretical Baseline 
Ref.: GE_ATBD 
Issue: 3.4  
Date: 31 March 2016 
Page:        46 of 64 

 

While the system therefore produces the estimates on daily level, better robustness is 
expected from the monthly averaged values. 
The primary source of observational information for the aerosol emission estimates are 
satellite retrievals of the aerosol optical depth (AOD). The AOD observation operator is 
defined by the profile of the mass extinction coefficient, which is computed using the Mie 
theory for a prescribed particle size distribution. The particle growth due to humidity is 
considered following Sofiev et al, (2011). 
The SILAM model currently includes the emission and formation of primary organic and 
inorganic, as well as secondary inorganic aerosols. However, the computational cost of the 
emission inversion requires a simplified representation of the heterogeneous chemistry. The 
emission inversion is therefore carried out in two steps: first, the contribution of non-
sulphuric aerosol compounds (NH4+, NO3

-) to the total AOD is computed, and subtracted 
from the observed values. Then, the optimization problem (1) is solved using a reduced 
model including only natural and anthropogenic primary aerosols and sulphate formation. 

4.4.3 Error analysis 
• AATSR 

The uncertainty estimation for the resulting AOD is obtained by propagating the 
measurement error of the top-of-atmosphere reflectance by applying inverse problem theory. 
After the result is determined, the uncertainty is computed using a posteriori covariance. The 
measurement error is taken to be 5 % of the measured reflectance and it is assumed to be 
uncorrelated. (ESA- CCI project) 

• MODIS  

A metric analysis of the retrieved AOD values is the tolerance which bounds AOD errors.  
Hyer et al., 2011 define the target accuracy as:  
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Globally, one standard deviation of “very good” data falls within (0.05 +0.2× Aτ ) error 
thresholds ( Aτ  is the AOD at the MODIS retrieval at 555 nm).  However, for most 
applications a prognostic RMS (root mean square) error model with a noise floor is more 
appropriate. For global applications using MODIS level 2 data over land, we recommend the 
use of the greater of 0.08 or 0.02 +0.22× Mτ  for terra and 0.07 or 0.01+0.26× Mτ for Aqua. 
(Shi et al., 2011, Zhang et al 2006, Remer et al 2005, among others). Where Mτ  is “Corrected 
Optical Depth-Land” from the level 2 product. 
The emission estimates are affected by the uncertainties in observations, a priori emissions as 
well as uncertainties in the chemistry-transport model. The observational and a priori 
emission errors are encoded in the covariance matrices R and B in Eq. (1). While an algebraic 
relation between R, B, and the a posteriori errors is easy to derive, its evaluation is 
computationally difficult due to the dimension of the problem. Moreover, the effect of 
forward model errors is not quantified this way. 
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The sensitivity to errors in the input data will be studied using Monte-Carlo simulations with 
synthetic observations. The effect of modeling errors can be investigated with cross-
validation using several chemistry-transport models with independent inversion schemes.  
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4.5 Emission Estimates related to fires 
 

4.5.1 Input data 
The input data for the aerosol emission estimation will be based on AOD retrievals of 
AATSR and MODIS. 

 

4.5.2 Algorithm description 
The emission inversion is based on using the SILAM chemistry transport model driven by 4-
dimensional variational inversion scheme.  
System for Integrated modeLling of Atmospheric coMposition SILAM (Sofiev et al., 2006, 
2008) currently includes both Eulerian and Lagrangian advection-diffusion formulations. The 
Eulerian core used in the current study is based on the transport scheme of Galperin (1999, 
2000), which incorporates the horizontal diffusion term and is combined with the extended 
resistance analogy of Sofiev (2002) for vertical diffusion. 
The removal processes are described via dry and wet deposition. Depending on the particle 
size, mechanisms of dry deposition vary from the primarily turbulent diffusion driven 
removal of fine aerosols to the primarily gravitational settling of coarse particles (Slinn and 
Slinn, 1980). The SILAM wet deposition parameterization (Sofiev et al., 2006, Horn et al., 
1987, Smith and Clark, 1989, Jylha, 1991) is based on direct observations performed for 
moderately hydrophobic aerosols. It distinguishes between sub- and in-cloud scavenging by 
both rain and snow. The particle size dependence of the impaction scavenging is taken into 
account by increasing the scavenging rate for super-micron particles in relation to their 
settling velocity.  

The system includes a meteorological pre-processor for diagnosing the basic features of the 
boundary layer and the free troposphere from the meteorological fields provided by 
numerical weather prediction (NWP) models (Sofiev et al., 2010). Physical-chemical 
transformation modules of SILAM include several tropospheric chemistry schemes, basic 
aerosol dynamics, and radioactive decay processes. The system accepts flexible definition of 
the particle size spectrum, which can be defined for each specific run depending on the 
application. 
The emission inversion is based on a variant of the 4D-Var data assimilation method, which 
involves iterative minimization of a quadratic cost function depending on the distance of the 
observations and their modeled counterparts, and on the distance between the emission 
estimate and the a priori emission inventory. A detailed description of the emission inversion 
method has been given in Vira and Sofiev (2012). In the following, we present a summary of 
the method, and its extension into particulate matter. 

Let us denote the parameter (such as initial state or emission rate) of interest as ξ, and define 
the model operator M mapping the parameter, or the control variable, to a unique phase-space 
trajectory x=Mξ defined over some finite time interval referred as the assimilation window. 
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The vector of observations y corresponds to the model state x via the observation operator H:  
y = H(x) + ε, where ε is the observation error, which is assumed to be Gaussian. 

The maximum likelihood estimate of the parameter ξ is then the value minimising the cost 
function 
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The first term penalises the deviation from the observations y whose accuracy is described by 
the covariance matrix R. The prior knowledge of ξ is included in the background value ξb and 
the background error covariance matrix B. The second term therefore penalises the deviation 
from the prior ξb. The cost function is minimised using iterative numerical algorithms. 

The gradient of equation (1) with respect to ξ  is  
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where M* and H* are the tangent linear adjoint model and observation operators, respectively. 
(Marchuk, 1995). 

The forward dispersion model corresponding to the operator M and defining the time 
evolution of the model state is defined by the scalar transport equation 
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where cn is a concentration of the n-th species, fn(x,t) is the emission density, and the 
chemical sources and sinks are included in S(c,t). If the reaction term is linear, i.e.

),(),( txkctcS n= , then the adjoint equation to (3) reads as (Marchuk, 1995) 
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Here c*(x,t) is the first-order sensitivity of the functional (1) to a concentration perturbation 
at time t. Its solution corresponds to M* in (2). 

Estimating the complete four dimensional emission distribution is impractical due to under-
determination of the problem. Therefore, the approach used in this work and shared by 
previous studies (Yumimoto et al., 2007, Elbern et al., 2007) is to assume a constant relative 
deviation of the emission intensity from the background rate throughout the assimilation and 
forecast windows. The adjusted emission rate is written as ),()(),( 0 txfxtxf α= , where 

)(xα  is to be estimated. The diurnal emission variations are thus not affected by the 
assimilation. The correction factor α(x) is assumed to be constant along the vertical axis 
(height). The sensitivity, and, consequently, the gradient of J(ξ) with respect to α(x) (see 
equation (2)) is obtained by integrating the solution of the adjoint problem (4) over the 
assimilation window and the vertical extent of the model domain.  

The final emission estimates are given by multiplying the prior emission field with the factors 
α. An assimilation window of 24 hours will be used for the GlobEmission aerosol product. 
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While the system therefore produces the estimates on daily level, better robustness is 
expected from the monthly averaged values. 
The primary source of observational information for the aerosol emission estimates are 
satellite retrievals of the aerosol optical depth (AOD). The AOD observation operator is 
defined by the profile of the mass extinction coefficient, which is computed using the Mie 
theory for a prescribed particle size distribution. The particle growth due to humidity is 
considered following Sofiev et al, (2011). 
The SILAM model currently includes the emission and formation of primary organic and 
inorganic, as well as secondary inorganic aerosols. However, the computational cost of the 
emission inversion requires a simplified representation of the heterogeneous chemistry. The 
emission inversion is therefore carried out in two steps: first, the contribution of non-
sulphuric aerosol compounds (NH4+, NO3

-) to the total AOD is computed, and subtracted 
from the observed values. Then, the optimization problem (1) is solved using a reduced 
model including only natural and anthropogenic primary aerosols and sulphate formation. 

4.5.3 Error analysis 
• AATSR 

The uncertainty estimation for the resulting AOD is obtained by propagating the 
measurement error of the top-of-atmosphere reflectance by applying inverse problem theory. 
After the result is determined, the uncertainty is computed using a posteriori covariance. The 
measurement error is taken to be 5 % of the measured reflectance and it is assumed to be 
uncorrelated. (ESA- CCI project) 

• MODIS  

A metric analysis of the retrieved AOD values is the tolerance which bounds AOD errors.  
Hyer et al., 2011 define the target accuracy as:  
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Globally, one standard deviation of “very good” data falls within (0.05 +0.2× Aτ ) error 
thresholds ( Aτ  is the AOD at the MODIS retrieval at 555 nm).  However, for most 
applications a prognostic RMS (root mean square) error model with a noise floor is more 
appropriate. For global applications using MODIS level 2 data over land, we recommend the 
use of the greater of 0.08 or 0.02 +0.22× Mτ  for terra and 0.07 or 0.01+0.26× Mτ for Aqua. 
(Shi et al., 2011, Zhang et al 2006, Remer et al 2005, among others). Where Mτ  is “Corrected 
Optical Depth-Land” from the level 2 product. 
The emission estimates are affected by the uncertainties in observations, a priori emissions as 
well as uncertainties in the chemistry-transport model. The observational and a priori 
emission errors are encoded in the covariance matrices R and B in Eq. (1). While an algebraic 
relation between R, B, and the a posteriori errors is easy to derive, its evaluation is 
computationally difficult due to the dimension of the problem. Moreover, the effect of 
forward model errors is not quantified this way. 
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The sensitivity to errors in the input data will be studied using Monte-Carlo simulations with 
synthetic observations. The effect of modeling errors can be investigated with cross-
validation using several chemistry-transport models with independent inversion schemes.  
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4.6 Emission Estimates related to fires 
 

4.6.1 Input data 
The Integrated System for wild-land FIRES (IS4FIRES) v.1.2 is based on Level 2 MODIS 
Collection 5.1 Active Fire Products, which are used for the near-real-time and historical 
evaluation of the emissions from wild-land fires, as well as a series of other input data 
(Figure 5). Considerations are given to include fire products of VIIRS, GOES-2 and GOES-3 
when these data become available. 
 

 
Figure 5. Scheme of data flows of IS4FIRES v.1.2. 

 
The incorporation of the fire injection profile resulted in a strict separation of the satellite-
related data containing the fire information and land cover from the meteorology-related data 
used for calculation of the initial 3D plume distribution. For the sake of efficiency, the second 
part has been incorporated inside the SILAM model – because this is the first system that 
naturally involves the meteorological–data processing routines. Therefore, the IS4FIRES 
v.1.2 per-se became smaller: it only checks, reprojects and aggregates the MODIS fire 
observations in the daily fire observations. The rest of emission calculation takes place in 
SILAM, which calculates the absolute emission and its 3D injection clouds dynamically 
while evaluating the impact of fires on atmospheric composition and air quality.  
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The present IS4FIREScconsists of two parallel branches based on partly independent 
products: the Temperature Anomaly and Fire Radiative Power. Their algorithms of 
converting the fire information to the emission fluxes of atmospheric pollutants are described 
below, starting from the outlines of the corresponding fire products. They are used so that, if 
the FRP information on the specific fire is available, it is taken as-is. Should the FRP 
processing of MODIS fail but the TA processing pass, the TA value is used for producing the 
would-be-FRP value following the non-linear regression suggested by Sofiev et al, (2009). 
The MODIS fire detection procedure is based on a contextual algorithm of Giglio et al (2003) 
that exploits the strong emission of mid-infrared radiation from fires (Dozier, 1981; Matson 
and Dozier, 1981). The algorithm examines each pixel of the MODIS swath and attributes it 
to one of the following classes: missing data, cloud, water, non-fire, fire, or unknown. For 
each fire-classified pixel, the procedure attempts to use the neighbouring pixels to estimate 
the radiometric signal of the pixel, if there would be no fire there. Valid neighbouring pixels 
are identified in a window centred on the potential fire pixel and used to estimate this 
background value. 

4.6.2 Algorithm description 
The procedure of determining the emission from the wild-land fires will generally follow that 
of aerosol products – with a few exceptions. Firstly, the background emission will be taken 
from IS4FIRES system of FMI outlined below. Secondly, the data assimilation will be used 
to constrain both particulate matter and gaseous species, with primary attention paid to CO. 

The Fire Radiative Power (FRP, a rate of release of Radiation Energy, FRE) of the fire pixel 
is based on the empirical formula of Kaufman et al (1998):  

   ( ) ][,1034.4 8
4

8
4

13 WattTTFRP b−∗= − ,   (1) 

where the T4, and T4b are the fire and the background (taken from neighbouring pixels) 
temperatures, respectively, measured at the 4-µm channel. The dependence has been obtained 
from fitting the actual release of radiative energy from a fire and its apparent temperature at 
the 4 and 11 µm channels – as observed by the MODIS instrument. The relationship showed 
good correlation for open moderate-to-strong fires (Kaufman et al, 1998). There may be 
potential difficulties for small fires, as these may be partly overshadowed by trees, appear as 
low-temperature but strongly emitting smouldering fires, etc.  
Both TA and FRP data are included into the level 2 Fire Products (MOD14 for Terra and 
MYD14 for Aqua satellites).  
To convert the FRP to emission fluxes we used a similar approach as for TA – a direct 
conversion of FRP using an empirical scaling to emission rates. In the current FAS it is based 
on Ichoku & Kaufman (2005, hereinafter referred as IK05) who related the FRP in [W] per 
pixel to total particulate matter (PM) emission in [kg tPM s-1]. Since the calibration IK05 was 
obtained by relating the aerosol optical depth (AOD) with the FRP, the obtained emission 
factors are valid for total PM instead of PM2.5, which was the reference species for FAS-TA. 
The mean relation between these PM measures can be evaluated based on AM01: within the 
fire plume  
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    pmtotalpm mm 6.05.2 ≈     (2) 

The relation is approximately valid for all land use types: the changes between the vegetation 
types are smaller than the uncertainty range within each type (AM01).  
The key parameter for IS4FIRES is therefore the emission rate of total PM per unit FRP, i.e. 
the smoke emission factor Ce [kg tPM J-1]. According to IK05, Ce varies from 0.02-0.06 kg 
tPM MJ-1 for boreal regions, 0.04-0.08 kg tPM MJ-1 for Africa (mainly savannas and 
grassland), and 0.08-0.1 kg tPM MJ-1 for Western Russian regions. Since the Ce 
determination involved a simple estimate of atmospheric transport (based on wind at a 
constant height and not involving a dispersion model), the authors suggested that the 
coefficients are probably overestimated by about a factor of 2. Using these estimates as a 
starting point, we have re-estimated the emission coefficients using actual land-cover 
information, instead of geographical regions. For the IS4FIRES v.0.99 and v.1.0, three land 
cover classes were considered: forest, grass, and mixture of both. The corresponding total-
PM emission factors were suggested as: 0.035 kg tPM MJ-1 for forest, 0.018 kg tPM MJ-1 for 
grassland and agriculture, and 0.026 kg tPM MJ-1 for mixed areas. These values were 
deduced from the prevailing land cover in the IK05 domains. 

For the IS4FIRES v.2, the primary deliverable of the GlobEmission, the list of land cover 
classes was increased to 7 types (Table 2). 
 
Table 2. Emission factors for different land cover types (intermediate calibration based on 2008 global simulations). 

Land cover PM2.5 factor unit PM10 factor Unit 

Tropical forest 0.00697 kg/MJ 0.01417 kg/MJ 

Grass 0.00410 kg/MJ 0.00474 kg/MJ 

Crop residue 0.01003 kg/MJ 0.02083 kg/MJ 

Pasture maintenance 0.02058 kg/MJ 0.04020 kg/MJ 

Boreal forest 0.01085 kg/MJ 0.01419 kg/MJ 

Temperate forest 0.00410 kg/MJ 0.00484 kg/MJ 

Peat 0.02086 kg/MJ 0.04173 kg/MJ 

Shrub 0.00475 kg/MJ 0.00558 kg/MJ 

 

We assume that inside the fire plumes, the AOD was entirely determined by the biomass-
burning products. Thus, Saarikoski et al (2007) found that more than 80% of PM2.5 during a 
specific episode in May 2006 was originated from fires – in comparatively aged plumes. We 
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therefore attributed all systematic discrepancy between the observed and calculated column 
AOD to errors in the emission rates, and corrected the emission factors accordingly.  
The intermediate calibration performed on the basis of a single year 2008 resulted in the 
emission factors shown in Table 2. For the final calibration, these values will be used as a 
starting point for refinement via both scaling calibration for other years and variational 
assimilation over specific episodes and regions, esp0ecially those dominated by a specific 
land cover type. 
 

4.6.3 Error analysis 
Direct error analysis of emission estimates is not possible due to no direct observations of this 
quantity. Therefore, the error analysis will concentrate on two complementary directions: (i) 
evaluation of the resulting model plumes from fires using the satellite and in-situ pollutant 
data, (ii) inter-comparison with existing emission inventories for the same time period.  
Comparison with existing inventories will be made for evaluating the general uncertainties of 
the emission estimates rather for correcting the GlobEmission estimates: a-priori it is not 
known, which inventory is more accurate.  
Provision will be given to application of the obtained emission inventory in another model of 
GlobEmission – LOTOS-EUROS, which would demonstrate the impact of the model 
formulations to the emission estimations. 
 

  



 

 Title: Algorithm Theoretical Baseline 
Ref.: GE_ATBD 
Issue: 3.4  
Date: 31 March 2016 
Page:        56 of 64 

 

4.7 High Resolution Emission Inventories 
 

4.7.1 Input data 
• Regional emission inventory for Middle East, provided by KNMI: KNMI will provide 

emission estimates of NOx on a 0.25 degree resolution, derived from satellite 
observations and inverse modelling, for the Middle East.  
 

• Sector split provided by QEERI or based on literature search: The regional emission 
inventory for the Middle East will be provided by KNMI as total emissions, i.e. without 
any breakdown over different economic sectors. As further downscaling is highly 
dependent on the breakdown over different sectors, information on the sectoral split is 
required.  
For South Africa (GlobEmission, phase 1), relative values were taken from literature, 
however these data had a lot of draw-backs: the data were outdated, they were only 
available at national level, only dealt with anthropogenic emissions, and only 4 main 
sectors were included, … .  
For the downscaling application in Qatar, we hoped to find better data. Hereto, it was 
agreed with QEERI, the GlobEmission user from Qatar, that VITO would perform a 
literature search on available data with respect to relative contributions (biogenic versus 
anthropogenic on one hand and contributions of (sub)sectors within both, biogenic and 
anthropogenic emissions, on the other hand). Moreover, VITO would perform a screening 
on the availability of similar data in surrounding areas (Saudi Arabia, United Arab 
Emirates, …). QEERI from its side would investigate which data are available via the 
Qatar national reporting system (Qatar needs to report emissions to the UN). Furthermore, 
it was also agreed that QEERI would facilitate discussions with eventual data suppliers 
(e.g. from surrounding areas) on VITOs request.  
During the project it became clear that QEERI would be unable to deliver the necessary 
proxy information to VITO for the downscaling. Therefore alternatives were sought 
andwe had to resort to the EDGAR v4.2 inventory for sector split information. The 
EDGAR v4.2 information contains global emission estimates on a 0.1x0.1° grid. These 
contain emissions in the sectors energy, industry, transport, residential, shipping 
emissions and airborne emissions (landing & take-off, climb & descent and cruising). 
From this emission inventory, fraction maps were derived at the resolution of the low 
resolution satellite imagery (0.25°) delivered by KNMI. 
 

• Proxy data provided by QEERI: According to QEERI, the most important sources with 
respect to NOx emissions in Qatar, can be found within the following sectors:  
 
→ Anthropogenic sources: 

o Oil and Gas    
o Off shore Oil and Gas 
o Water desalination & Power generation 
o Road Transport   
o Shipping 
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o Aviation 
o Residential & Commercial : to a lesser degree 
o Agriculture, Farms? 
 

→ Biogenic emissions : absent 
 

Consequently, good proxy data for each of these sectors are required. Given the decision 
to resort to the EDGAR v4.2 inventory for sector split information (see above), proxy 
data for the EDGAR sectors, being energy, industry, transport, residential, shipping 
emissions and airborne emissions (landing & take-off, climb & descent and cruising), 
were  sought either from open-source and freely available datasets, or was constructed 
using various range of GIS or classification techniques. Below is a short overview: 
  

o Road network : www.openstreetmap.org was used to calculate the total length of 
road per gridcel (both high & low resolution) 

o Energy emissions (powerplants) were estimated using the http://enipedia.tudelft.nl 
archive.  

o The residential and industrial emissions were disaggregated using a land cover 
map which was derived via support vector regression classification of two landsat 
8 images (dated 15 september 2015).  

o Maritime and off-shore activities were disaggregated using an AIS transponder 
density map from http://www.marinetraffic.com  

o Finally airborne emissions were disaggregated using flight tracks from 
www.openflights.org   

 
This yields the following mapping between the sectors and the proxy data: 
 
 
Sector Source Proxy Unit 

Transport Open Street Maps Total length of roads km 

Energy Enipedia CO2 emissions kton 

Industry Landsat Built up area km2 

Residential Landsat Built up area km2 

Shipping marinetraffic.com AIS density color map a.u. 

Air - LTO manual Airport surface km2 

Air - CDS flightdata.org Total length of flighttracks to 
DOH 

Km 

http://www.marinetraffic.com/
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Air - CRS flightdata.org Total length of flighttracks Km 

 
 
Below we give a brief overview of these proxy layers derived for Qatar.  
 
 
Total length of road [km] based on open street maps :  
 

  
Figure 6 : Total length of roads on the coarse and high resolution grid (right) for Qatar.  

 
Location of powerplants in Qatar (enipedia) : 
 
These were derived base on the enpedia database (http://enipedia.tudelft.nl/)., which contains 
next to name, latitude, longitude also information on power output in MW, capacity and/or 
CO2 emissions. We are using the information on CO2 emission as a proxy to downscale the 
NOx emissions. Where the CO2 emission information is missing, we estimate it by scaling 
the power output or powerplant capacity using the CO2 emissions/MW ratio calculated from 
the rest of the Qatari powerplants. Below we give a table with the reconstructed information 
used as a proxy to downscale the power plant emissions.  

http://enipedia.tudelft.nl/)
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Figure 7 : Location of powerplants in Qatar, source: enipedia (http://enipedia.tudelft.nl/) 

 
Name Lat. Lon. CO2 emissions  

[kton] 
Capacity 

[MW] 
Ras Abu Fontas B1 25.19841 51.61591 1549 985 
Ras Laffan-a 25.92279 51.54527 1277 756 
Ras Abu Fontas A 25.20497 51.6177 861 626 
Ras Laffan-b 25.92462 51.54786 790 1025 
Umm Said Refinery  24.92483 51.55808 365 128 
Al-wajbah 25.3001 51.40455 360 301 
Ras Laffan Rasgas 25.89208 51.54192 358 330 
Ras Laffan Qatargas 25.90949 51.55555 206 187 
Saliyah 25.20661 51.39243 164 134 
Doha South Super  25.19359 51.52414 84 67 
Dukhan Field 25.4228 50.75307 52 44 
Mesaieed Qatalum 24.97119 51.58123 1906 1350 
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Mesaieed 24.97516 51.57787 2834 2007 
Ras Laffan-c 25.93635 51.52407 3855 2730 
Ras Abu Fontas B2 25.19632 51.61605 801 567 
Umm Said Qapco 24.99611 51.54889 77 N/A 
Doha Dswmc 25.28667 51.53333 N/A N/A 
Ras Laffan Dolphin 25.90861 51.57833 N/A N/A 
Al Ali Hospital 25.27932 51.52245 N/A N/A 
Doha Qafco 25.27932 51.52245 N/A N/A 
Qafco Works 24.98751 51.5466 286 N/A 
Ras Abu Aboud 25.32342 51.50868 193 N/A 
Mesaieed Qvc 24.98751 51.5466 153 N/A 
Halul Terminal 25.66667 52.41667 16 N/A 
Abu-samra 25.21667 50.96639 5 N/A 
Maersk Qatar 25.35483 51.18388 25 N/A 

Table 3 : Proxy information derived from enipedia to downscale the powerplant fraction of the low resolution 
emissions. 

 
Proxy data for residential/industrial emissions : 
 
In order to derive a proxy dataset for residential/industrial emissions, we typically rely on 
land cover/land use information. However for Qatar, since no dataset is available, we derived 
an own land cover map based upon support vector classification of a landsat image :  

 
- two landsat 8 images (15 september 2015) were downloaded and mosaicked together 

to cover the full Qatari peninsula. 
- Ground truth samples were constructed using “best guess” and Google Earth. We 

used 5 different classes in the classification : Urban (builtup-area), Vegetated area, 
Roads, Desert (Bare Soil) and Waterbodies. Unfortunately, within the project it was 
not possible to distinguish adequately between urbanised area’s and industrial area’s.  

- The classification was performed using support vector machine in the SAGA-GIS 
software package.  

- Afterwards, manual corrections were applied based upon google earth.  
 
The resulting land cover map is given below :  
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Figure 8 : Left : false color image of the Landsat 8 image (15 september 2015) used for the classification, shown on 
the right. Below, a zoom over Doha is provided. 
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From this land cover classification dataset, the following residential/built up proxy patterns 
are derived, both at low and high resolution  
 

  
Figure 9 : Proxy pattern for the low/high resolution residential & industrial emissions (exclusing powerplants). 

 
Proxy data for shipping emissions : 
 
Shipping emissions were downscaled with information reconstructed from marine traffic 
transponder density maps for 2013 available from http://www.marinetraffic.com. These 
density maps clear show the presence of important oil and gas fields in the Arabian gulf. The 
coarse and high resolution proxy datasets are shown below.  
 

  
Figure 10 : Coarse and high resolution density maps used to downscale the shipping emissions, derived from the 2013 
AIS transponder density maps on marinetraffic.com 

http://www.marinetraffic.com/
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4.7.2 Algorithm description 
Below, the methodology used for downscaling of NOx emissions for the Middle East is 
outlined. The methodology for downscaling the regional inventory consisted of the following 
steps: 

1. The gridded regional (0.25° resolution) emission estimates from KNMI were combined 
with EDGAR emissions as to obtain sector-specific emission estimates. Hereto, from the 
EDGAR emission inventory, fraction maps were derived at the resolution of the low 
resolution satellite imagery (0.25°) delivered by KNMI. Subsequently, the EDGAR-based 
fractions were applied to the KNMI emission estimates. As a result, the KNMI emission 
estimates were split into sectoral emissions (with preservation of the KNMI total per grid 
cell); 
 

2. Sector-specific emission estimates resulting from step one were smoothened as to avoid 
boundary effects. Hereto a bilinear interpolation was applied; 
 

3. Spatial patterns were generated using the available geographical proxy data (see above);  
 

4. Computation of high resolution emission maps (0.025°) from 
a. the smoothened sectoral emissions (step 2) 
b. the spatial patterns on the high resolution degrees grid (step 3) 

 

4.7.3 Example product 
 

An example product is shown below.  
 



 

 Title: Algorithm Theoretical Baseline 
Ref.: GE_ATBD 
Issue: 3.4  
Date: 31 March 2016 
Page:        64 of 64 

 

    
Figure 11 :Example product showing the downscaled emission estimates above Qatar for the month of January 2011.  
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